Laboratory Evaluation of Honeywell Polymer vs SBS Polymer Modified Asphalt Mixtures

- Final Report -May 2013

Submitted to:

New Jersey Department of Transportation (NJDOT) Bureau of Materials

Conducted by:

Thomas Bennert, Ph.D. The Rutgers Asphalt/Pavement Laboratory (RAPL) Center for Advanced Infrastructure and Transportation (CAIT) Rutgers University Department of Civil and Environmental Engineering 623 Bowser Road Piscataway, NJ 08854

Disclaimer Statement

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof.

1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.		
Hnywll-RU3086				
4. Title and Subtitle	an averall Deleman ve SDS	5. Report Date 05/2013		
Laboratory Evaluation of H				
Polymer Modified Asphalt N	lixtures	6. Performing Organization Code		
		CAIT/Rutgers University		
7. Author(s)		8. Performing Organization Report No.		
Thomas Bennert, Ph.D.		Hnywll-RU3086		
9. Performing Organization Name and Addres	3	10. Work Unit No.		
Rutgers, The State University	of New Jersey			
100 Brett Road Road, Piscatav	vav. 08854	11. Contract or Grant No.		
		Hnywll-RU3086		
		iniywn Resoud		
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered		
Center for Advanced Infrastructure and	Fransportation	Final Report		
Rutgers, The State University of New Je		12/01/2010 - 01/31/2013		
100 Brett Road,		14. Sponsoring Agency Code		
Piscataway, NJ 08854				
15. Supplementary Notes				
U.S. Department of Transportation/Rese	arch and Innovative Technology Adm	ninistration		
1200 New Jersey Avenue, SE				
Washington, DC 20590-0001				
16. Abstract				
The scope of the study is to eva	• 1	1		
one modified with SBS pol	ymer and the second mod	lified with a polymer from		

one modified with SBS polymer and the second modified with a polymer from Honeywell. Both asphalt binder and mixture properties are proposed to be evaluated in the study. Laboratory asphalt mixture tests are proposed to evaluate the overall performance of the asphalt mixtures developed using the two asphalt binders modified with the Honeywell polymer and the SBS polymer.

17. Key Words			18. Distribution Statement			
SBS Polymer Comparison, Honeywell, Laboratory						
Testing, Hot Mix Asphalt						
19. Security Classification (of this report)	20. Security Classification (of th	is page) 21. No. of Pages		22. Price		
Unclassified	Unclassified		28			
e nerussinieu			-0			
Form DOT F 1700.7 (8-69)	Form DOT F 1700.7 (8-69)					

TABLE OF CONTENTS

Contents

Scope of Work	6
Volumetrics Stiffness and Composition	6
Asphalt Mixture Testing	7
Dynamic Modulus (AASHTO TP79)	8
Rutting Evaluation	. 12
Fatigue Cracking Evaluation	. 14
Resistance to Moisture-Induced Damage (Tensile Strength Ratio, TSR) – Test Results	. 16
Conclusions	. 18
APPENDIX A – ASPHALT BINDER CERTIFICATE OF ANALYSIS	. 19
APPENDIX B – QC DATA	. 25

LIST OF FIGURES

Figure 1 - Photo of the Asphalt Mixture Performance Tester (AMPT) 8	3
Figure 2 - Dynamic Modulus (E*) Master Stiffness Curves for Short-Term Aged (STOA))
Conditions for Honeywell PE and SBS Polymer Modified PG76-22)
Figure 3 - Dynamic Modulus (E*) Master Stiffness Curves for STOA and LTOA	
Conditions – Honeywell Modified)
Figure 4 - Dynamic Modulus (E*) Master Stiffness Curves for STOA and LTOA	
Conditions – SBS Modified 11	Ĺ
Figure 5 - Dynamic Modulus (E*) Master Stiffness Curves for LTOA Condition – SBS	
Modified and Honeywell Modified Mixtures 12	2
Figure 6 - Asphalt Pavement Analyzer (APA) Rutting Results)	3
Figure 7 - Picture of the Overlay Tester (Chamber Door Open) 15	5
Figure 8 - Overlay Tester Results of Honeywell PE and SBS Modified SMA 16	5
Figure 9 - Flexural Fatigue Results for Short-term Aged SBS Polymer and Honeywell PE	,
Polymer Modified SMA 17	1

LIST OF TABLES

Table 1 - Summary of Volumetrics and Composition for SMA Mixtures	7
Table 2- Repeated Load – Flow Number Test Results	. 14
Table 3 - Tensile Strength Ratio (TSR) Results of Honeywell PE Modified and SBS	
Modified SMA	. 17

Scope of Work

The scope of the project encompassed evaluating the asphalt binder and mixture performance of two PG76-22 asphalt binders modified with different polymers; 1) Styrene-Butadiene-Styrene (SBS) with Polyphosphoric Acid (PPA) and 2) Honeywell Polyethylene (PE) blended with SBS polymer. The target performance grade (PG) of the asphalt binders was a PG76-22. The asphalt binder test results provided by NuStar Asphalt can be found in Appendix A.

Asphalt binder data for these binders were provided to Rutgers University from NuStar Asphalt for the Lots supplied to Tilcon. The asphalt binders were used to produce a 12.5mm Stone Mastic Asphalt (SMA), designated by the New Jersey Department of Transportation (NJDOT) as a 12.5SMA76. Loose mix produced from a drum plant at Tilcon's Keasby facility was sampled from the delivery trucks prior to leaving the asphalt plant, placed and sealed in 5 gallon metal buckets. The Quality Control data forms from production can be found in Appendix B.

Laboratory testing consisted of mixture testing that focused on the stiffness, rutting, fatigue, and moisture damage resistance performance. The asphalt mixture testing consisted of:

- Dynamic Modulus (AASHTO TP79);
 - Short-term and long-term aged conditions
- Rutting Evaluation
 - Asphalt Pavement Analyzer (AASHTO T340)
 - Asphalt Mixture Performance Tester (AASHTO TP79)
- Fatigue Cracking Evaluation
 - Flexural Beam Fatigue (AASHTO T321)
 - Short-term and long-term aged conditions
 - Overlay Tester (NJDOT B-10)
 - Short-term and long-term aged conditions
- Moisture Susceptibility (AASHTO T283)

It should be noted that although the figures and tables noted as Honeywell PE Modified used a blend of Honeywell PE and SBS polymers. The figures and tables noted as SBS Modified used a blend of SBS polymer and polyphosphoric acid (PPA).

Volumetrics Stiffness and Composition

During production, loose mix was sampled from the back of the delivery trucks, prior to leaving the plant, to conduct Quality Control testing. Volumetrics and composition were determined for both the SBS and Honeywell polymer-modified PG76-22 asphalt binder SMA mixtures. A summary of the test results are shown in Table 1. The results indicate

that the SBS modified mixture resulted in a slightly higher total and effective asphalt content when compared to the Honeywell mixture. Meanwhile, the aggregate gradation and Voids in Mineral Aggregate (VMA) of the mixtures were quite similar.

Property	% Passing				
Sieve Size	Honeywell Modified	SBS Modified			
3/4" (19 mm)	100	100			
1/2" (12.5 mm)	90.1	91.4			
3/8" (9.5 mm)	74.4	73.1			
No. 4 (4.75 mm)	31.3	28.5			
No. 8 (2.36 mm)	19.9	20.1			
No. 16 (1.18 mm)	16.2	16.5			
No. 30 (0.600 mm)	14.0	14.3			
No. 50 (0.425 mm)	12.2	12.4			
No. 100 (0.15 mm)	10.3	10.2			
No. 200 (0.075 mm)	7.9	8.1			
Gmm (g/cm ³)	2.448	2.450			
AV% @ N _{design}	4.0	3.4			
Asphalt Content (%)	6.15	6.36			
Effective AC (%)	5.87	6.08			
VMA (%)	17.4	17.4			

Table 1 - Summary of Volumetrics and Composition for SMA Mixtures

Asphalt Mixture Testing

The asphalt mixture produced by Tilcon consisted of a 12.5mm SMA mixture containing a PG76-22 asphalt binder. The 12.5SMA76 was placed as a surface course on U.S. Rt 1. During production, the asphalt mixtures were sampled and placed in 5-gallon metal containers. The containers were delivered to the Rutgers Asphalt Pavement Laboratory, where the sample containers were stored until sample fabrication and testing.

Prior to testing, the asphalt mixtures were reheated to compaction temperature and then compacted into the respective performance test specimens. For this study, test specimens were compacted to air void levels ranging between 6 and 7%, except for moisture damage susceptibility testing (AASHTO T283) where the samples were prepared to air voids ranging between 6.5 and 7.5%.

All mixtures reheated to compaction temperature and then immediately compacted into test specimens were considered to be Short-Term Aged (STOA). Long-Term Aging (LTOA) of the mixtures was conducted using the protocols specified in AASHTO R30, *Mixture Conditioning of Hot Mix Asphalt (HMA)*.

Dynamic Modulus (AASHTO TP79)

Dynamic modulus and phase angle data were measured and collected in uniaxial compression using the Simple Performance Tester (SPT) following the method outlined in AASHTO TP79, *Determining the Dynamic Modulus and Flow Number for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT)* (Figure 1). The data was collected at three temperatures; 4, 20, and 45°C using loading frequencies of 25, 10, 5, 1, 0.5, 0.1, and 0.01 Hz. Test specimens were evaluated under short-term aged conditions. Since the mixtures evaluated in the study were plant produced, it was assumed that these materials already represented short-term aged conditions.

Figure 1 - Photo of the Asphalt Mixture Performance Tester (AMPT)

The collected modulus values of the varying temperatures and loading frequencies were used to develop Dynamic Modulus master stiffness curves and temperature shift factors using numerical optimization of Equations 1 and 2. The reference temperature used for the generation of the master curves and the shift factors was 20°C.

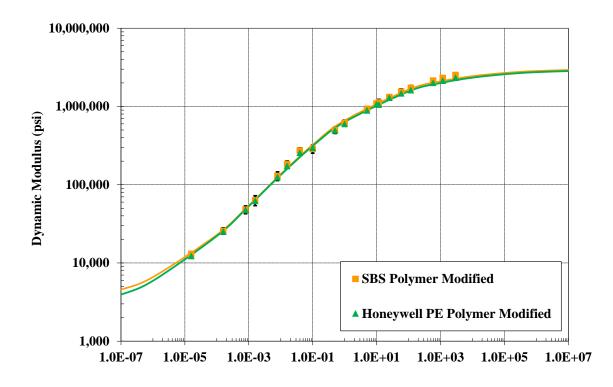
$$\log \left| E^* \right| = \delta + \frac{\left(Max - \delta \right)}{1 + e^{\beta + \gamma \left\{ \log \omega + \frac{\Delta E_a}{19.14714} \left[\left(\frac{1}{T} \right) - \left(\frac{1}{T_r} \right) \right] \right\}}}$$
(1)

where:

 $|E^*| =$ dynamic modulus, psi $\omega_r =$ reduced frequency, Hz Max = limiting maximum modulus, psi δ , β , and $\gamma =$ fitting parameters

$$\log\left[a(T)\right] = \frac{\Delta E_a}{19.14714} \left(\frac{1}{T} - \frac{1}{T_r}\right)$$
⁽²⁾

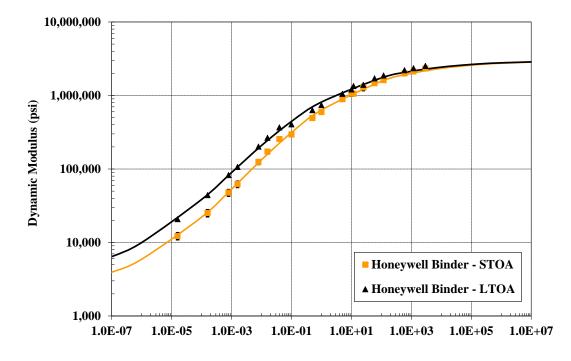
where:


a(T) = shift factor at temperature T

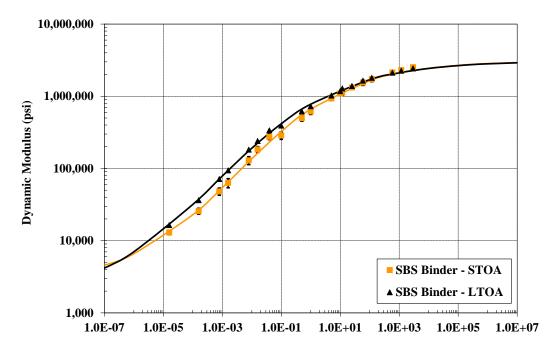
 T_r = reference temperature, °K

T = test temperature, °K

 ΔE_a = activation energy (treated as a fitting parameter)


Figure 2 shows the master stiffness curves for the short-term aged mixtures. The test results show that both mixtures have very similar stiffness properties at the short-term aged condition.

Loading Frequency (Hz)


Figure 2 - Dynamic Modulus (E*) Master Stiffness Curves for Short-Term Aged (STOA) Conditions for Honeywell PE and SBS Polymer Modified PG76-22

Figures 3 through 5 show the resultant stiffness characteristics of the mixtures after LTOA conditioning. In Figures 3 and 4, both mixtures clearly stiffen as the mixture goes from the STOA condition to the LTOA condition with the magnitude of stiffening less for the SBS modified mixture. Meanwhile, Figure 5 contains both the SBS and Honeywell polymer-modified mixtures after LTOA conditioning. Comparing Figures 3 through 5, it is clear that the Honeywell modified mixture resulted in a higher level of age hardening than the SBS modified mixture.

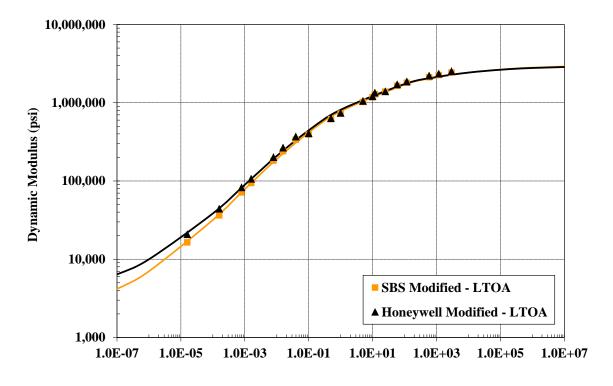

Loading Frequency (Hz)

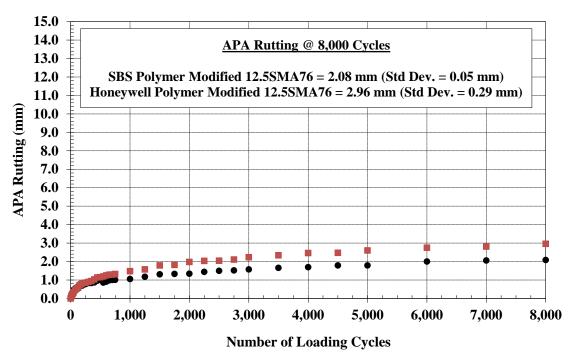
Figure 3 - Dynamic Modulus (E*) Master Stiffness Curves for STOA and LTOA Conditions – Honeywell Modified

Loading Frequency (Hz)

Figure 4 - Dynamic Modulus (E*) Master Stiffness Curves for STOA and LTOA Conditions – SBS Modified

Loading Frequency (Hz)

Figure 5 - Dynamic Modulus (E*) Master Stiffness Curves for LTOA Condition – SBS Modified and Honeywell Modified Mixtures


Rutting Evaluation

The rutting potential of the asphalt mixtures were evaluated in the study using two test procedures; 1) The Asphalt Pavement Analyzer (AASHTO T340) and 2) The Repeated Load – Flow Number (AASHTO TP79).

Asphalt Pavement Analyzer (APA)

Compacted asphalt mixtures were tested for their respective rutting potential using the Asphalt Pavement Analyzer (APA) in accordance with AASHTO T340, *Determining Rutting Susceptibility of Asphalt Paving Mixtures Using the Asphalt Pavement Analyzer (APA).* Prior to testing, the samples were conditioned for a minimum of 4 hours at the test temperature of 64°C. The samples are tested for a total of 8,000 cycles using a hose pressure of 100 psi and wheel load of 100 lbs.

The APA rutting results for the Honeywell PE and SBS modified SMA is shown in Figure 6. The results indicate that the SBS modified HMA had a slightly lower rutting potential when compared to the Honeywell PE asphalt binder.

64°C Test Temp.; 100psi Hose Pressure; 100 lb Load Load

Figure 6 - Asphalt Pavement Analyzer (APA) Rutting Results)

Repeated Load - Flow Number Test

Repeated Load permanent deformation testing was measured and collected in uniaxial compression using the Simple Performance Tester (SPT) following the method outlined in AASHTO TP79, *Determining the Dynamic Modulus and Flow Number for Hot Mix Asphalt (HMA) Using the Asphalt Mixture Performance Tester (AMPT)*. The unconfined repeated load tests were conducted with a deviatoric stress of 600 kPa and a test temperature of 54.4°C, which corresponds to New Jersey's average 50% reliability high pavement temperature at a depth of 25 mm according the LTPPBind 3.1 software. These testing parameters (temperature and applied stress) conform to the recommendations currently proposed in NCHRP Project 9-33, *A Mix Design Manual for Hot Mix Asphalt*. Testing was conducted until a permanent vertical strain of 5% or 10,000 cycles was obtained.

The test results for the Honeywell PE and SBS modified SMA is shown in Table 2. The Flow Number results indicate that on average the SBS polymer modified SMA resulted in a better resistance to permanent deformation than the Honeywell PE polymer modified SMA. This is consistent with the APA results shown earlier. When evaluating the data using the Student t-test, it was found that the permanent deformation results were statistically Not Equal at a 95% confidence level.

Mix Type	Sample ID	Flow Number	Cycle to Achieve
илх туре		(cycles)	5% Strain
	1	322	761
Heneywell	2	428	1,029
Honeywell	3	403	903
Polymer Modified	A verage	384	898
Modified	Std Dev	55	134
	COV %	14	15
	1	679	1,891
	2	482	1,400
SBS Polymer	3	657	1,924
Modified	A verage	606	1,738
	Std Dev	108	293
	COV %	18	17

Table 2- Repeated Load – Flow Number Test Results

Fatigue Cracking Evaluation

The fatigue cracking properties of the mixtures were evaluated using two test procedures; 1) the Overlay Tester (NJDOT B-10) and 2) Flexural Beam Fatigue (AASHTO T321).

Overlay Tester (NJDOT B-10)

The Overlay Tester, described by Zhou and Scullion (2007), has shown to provide an excellent correlation to field cracking for both composite pavements (Zhou and Scullion, 2007; Bennert et al., 2009) as well as flexible pavements (Zhou et al., 2007). Figure 7 shows a picture of the Overlay Tester used in this study. Sample preparation and test parameters used in this study followed that of NJDOT B-10, *Overlay Test for Determining Crack Resistance of HMA*. These included:

- \circ 25°C (77°F) test temperature;
- Opening width of 0.025 inches;
- Cycle time of 10 seconds (5 seconds loading, 5 seconds unloading); and
- Specimen failure defined as 93% reduction in Initial Load.

Test specimens were evaluated under both short-term and long-term aged conditions.

Figure 7 - Picture of the Overlay Tester (Chamber Door Open)

Figure 8 indicates that on average the Honeywell PE modified SMA has a slightly better resistance to crack propagation fatigue cracking than the SBS modified SMA when evaluated in the Overlay Tester at both the short-term and long-term aged conditions. However, when using the Student t-Test to determine if the test results were statistically equal, it was determined that the Overlay Tester performance of the two modified binders was statistically EQUAL at a 95% confidence interval at each respective aged condition. The results in Figure 8 also indicate that a reduction in fatigue crack propagation can be expected as both mixtures age.

Flexural Beam Fatigue (AASHTO T321)

Fatigue testing was conducted using the Flexural Beam Fatigue test procedure outline in AASHTO T321, *Determining the Fatigue Life of Compacted Hot-Mix Asphalt (HMA) Subjected to Repeated Flexural Bending*. The applied tensile strain levels used for the fatigue evaluation were; 300, 450, 600, 750 and 900 micro-strains. Samples were tested at short-term and long-term aged conditions as mentioned earlier.

Samples used for the Flexural Beam Fatigue test were compacted using a vibratory compactor designed to compact brick samples of 400 mm in length, 150 mm in width, and 100 mm in height. After the compaction and aging was complete, the samples were trimmed to within the recommended dimensions and tolerances specified under AASHTO T321. The test conditions utilized were those recommended by AASHTO T321 and were as follows:

- Test temperature = 15° C;
- Sinusoidal waveform;
- Strain-controlled mode of loading and loading frequency of 10 Hz.

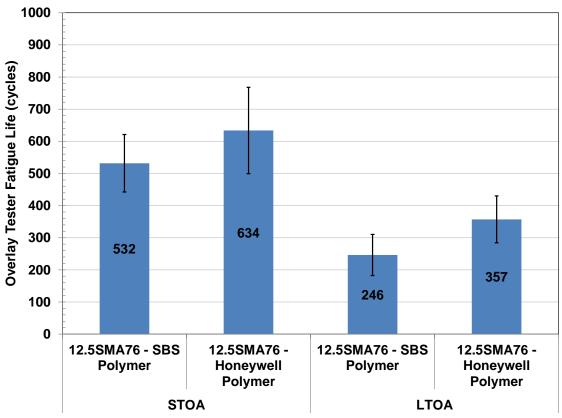
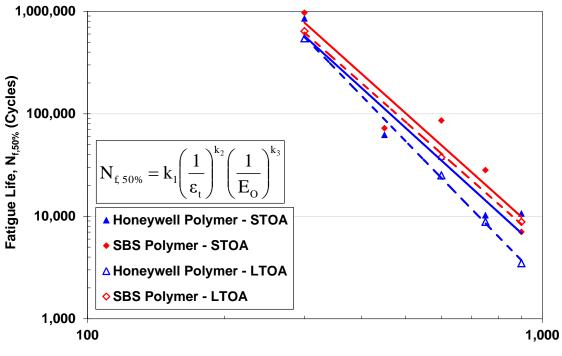



Figure 8 - Overlay Tester Results of Honeywell PE and SBS Modified SMA

The flexural beam fatigue test results for the Honeywell PE and SBS modified SMA mixes for the short-term condition is shown in Figure 9. The test results indicate that on average, the SBS polymer modified SMA had a slightly better resistance to crack initiation than the Honeywell PE polymer modified SMA at all strain levels tested for each respective aged condition.

Resistance to Moisture-Induced Damage (Tensile Strength Ratio, TSR) – Test Results

Tensile strengths of dry and conditioned asphalt samples were measured in accordance with AASHTO T283, *Resistance of Compacted Asphalt Mixtures to Moisture Induced Damage*. The results of the testing are shown in Table 3. The test results showed that the both the Honeywell PE and SBS polymer modified SMA mixtures did not meet the minimum 80% TSR specified by the NJDOT. On average, the Honeywell PE modified mixtures resulted in a slightly higher TSR value than the SBS polymer modified SMA mixture.

Micro-strain (µs)

Figure 9 - Flexural Fatigue Results for Short-term Aged SBS Polymer and Honeywell PE Polymer Modified SMA

Table 3 - Tensile Strength Ratio	(TSR)	Results	of I	Honeywell	PE	Modified a	nd SBS
	Mod	ified SM	[A				

12.5SMA76 - Honeywell PE Polymer						
Specimen Type	Indirect Tensile	Indirect Tensile Strength (psi)				
Specimen Type	Dry	Conditioned	(%)			
	137.9	100.8				
AASHTO T283	117.0	100.7	76.7%			
Conditioned	135.4	97.9	10.770			
	130.1	99.8				

12.5SMA76 - SBS Polymer					
Specimen Type	Indirect Tensile	e Strength (psi)	Average TSR		
Specimen Type	Dry Conditioned				
	143.8	94.7			
AASHTO T283	118.1	92.7	74.4%		
Conditioned	119.2	96.2	74.470		
	127.1	94.6			

Conclusions

A research program was developed to compare the performance of Stone Matrix Asphalt (SMA) mixtures modified with Honeywell PE and SBS polymer modifiers. The test results indicate;

- Comparing the volumetric and composition of SMA mixtures, both mixtures were quite similar with the SBS polymer modified mixture having a slightly higher total and effective asphalt content. All other volumetric and composition properties were identical.
- The SBS polymer modified SMA resulted in a better rutting resistance when measured in the Asphalt Pavement Analyzer (AASHTO T340) and the AMPT Flow Number test (AASHTO TP79).
- Fatigue performance of the binders was similar with the SBS polymer modified binder showing a slightly better resistance to crack initiation, as indicated with the Flexural Fatigue test (AASHTO T321). However, on average the resistance to crack propagation was found to be slightly better in the Honeywell PE polymer modified SMA mixture. This trend was found at each aged conditioned Short-term and Long-term conditions (AASHTO R30).
- Both the Honeywell PE and SBS polymer modified SMA mixtures resulted in very similar Tensile Strength Ratio (AASHTO T283) values. It was found both mixtures did not achieve the minimum required 80% TSR.

APPENDIX A – ASPHALT BINDER CERTIFICATE OF ANALYSIS

SBS + PPA MODIFIED PG76-22

Certificate of Analysis

				Australi Bartelog 111	
Supplie	r: NuStar Asphalt Refining, LLC		Phone	e: 856-579-5107	
Terminal: Blue Knight Energy Partners LP					
Addres	s: Gloucester City, NJ 08030				
Sample Grade	e: PG 76-22 PPA	Specifica	ation: AASHTO M32	20	
Tan	k: Inline	Date Sam	npled: 8/24/2012		
Lo	t: 8	Date Te	ested: 8/29/2012		
Volume	e: 336,000 gallons	Binder	Type: SBS Modified	1	
Method	Test	Result	Units	Spec Limit	
Unaged Binder					
AASHTO T228	Specific Gravity @ 77°F	1.035			
	Specific Gravity @ 60°F	1.041		Calculation	
	API Gravity @ 60°F	4.4	°API	Calculation	
	LBS/GAL	8.669		Calculation	
AASHTO T48	Flash Point	274	°C	Min 230	
AASHTO T316	Viscosity @ 135°C	1.162	Pa.s	Max 3.0	
	Viscosity @ 165°C	0.282	Pa.s	Report	
	Lab Mixing Temp °C, min	157	°C	Calculation	
	Lab Mixing Temp °C, max	163	°C	Calculation	
	Lab Compaction Temp ^o C, min	152	°C	Calculation	
	Lab Compaction Temp ^o C, max	157	°C	Calculation	
AASHTO T315	ODSR Test Temperature	76	°C		
	G*/sin delta	1.28	kPa	Min 1.00	
RTFO Aged Binder					
AASHTO T240	Mass Change	-0.22	Wt%	Max +/- 1.0	
AASHTO T315	RDSR Test Temperature	76	°C	,	
	G*/sin delta	3.08	kPa	Min 2.20	
ASTM D6084	Elastic Recovery; RTFO Residue	70	%		
PAV Aged Binder					
AASHTO T315	PDSR Test Temperature	31	°c		
	G*sin delta	1900	kPA	Max 5000	
AASHTO T313	BBR Test Temperature	-12	°c		
	Creep Stiffness @ 60 sec	235	MPa	Max 300	
	m-value @ 60 sec	0.332		Min 0.300	
	_				
Classification	PG CLASSIFICATION	PG 76-22			

By providing this data under my signature, I attest to the accuracy and validity of the data contained on the form and certify that no deliberate misrepresentation of test results, in any manner, has occurred.

Testing Laboratory:		Responsible Technician A		Approved E	8ү:
NuStar Asphalt, Pauls	boro, NJ	Signature:	Joan Fueda	Signature	Karissa Mooney
Issue Date:	8/30/2012	AASHTO #	Intertek - 1009		Karissa Mooney
					Quality Manager

HONEYWELL PE MODIFIED PG76-22

Intertek

_

Report of Analysis

Sample ID: Sample Designated As: Drawn By:	Client NUSTAR BALTIMORE	Customer Reference: P.O 4501333265 Date Taken: 17-August-2012 Date Submitted: 17-August-2012 Date Tested: 19-August-2012				
Method	Test	Result	Units	Spec Limit		
AASHTO T48-06 AASHTO T228-06	Corrected Flash Point (Conv. Calc) Sp Gr @ 77/77 deg F Sp Gr @ 60/60 deg F API Gravity	277 1.031 1.037 4.9	°C °API	Min 230		
AASHTO T316-06	LBS./GAL. Viscosity @ 135 deg C	8.640 1080 266	cP cP	Max 3000		
AASHTO T315 OB-06	Viscosity @ 165 deg C Test Temperature Complex Modulus (G*) Phase Angle (DELTA)	76.0 1.43 77.7	°C kPa deg			
	G*/Sin Delta Test Temperature Complex Modulus (G*) Phase Angle (DELTA) G*/Sin Delta	1.46 82.0 0.82 78.6 0.83**	kPa °C kPa deg kPa	Min 1.00 Min 1.00		
AASHTO T315 RTFO-06	Pass/ Fail Temperature Test Temperature Complex Modulus (G*) Phase Angle (DELTA)	80.0 76.0 2.89 73.3	°C °C kPa deg			
	G*/Sin Delta Test Temperature Complex Modulus (G*) Phase Angle (DELTA) G*/Sin Delta	3.01 82.0 1.57 76.5 1.62 **	kPa °C kPa deg kPa	Min 2.20 Min 2.20		
ASTM D6084	Pass / Fail Temperature Temperature Elastic Recovery of RTFO Residue	79.1 77 deg F 75	°C			
AASHTO T240-08 AASHTO TP70-07	Mass Gain + (or) Loss - Test Temperature Percent Recovery of RFTO Residue @ 100 PA Percent Recovery of RFTO Residue @ 3200 PA % Difference between Average % Recovered	-0.248 64.0 44.6361 36.0746 19.18	Wt % °C % %	-1.000 - 1.000		
	Non-Recoverable Creep Compliance @ 100 PA (Jnr) Non-Recoverable Creep Compliance @ 3200 PA (Jnr)	0.3253 0.3873	kPa kPa			
	% Difference between Average Non Recoverable Creep Compliance	19.06	%			
AASHTO R28-06 AASHTO T315 PAV-06	Proposed MSCR (Jnr) specification PAV Aging for 20hrs @ 2.1 MPa Test Temperature Complex Modulus (G*) Phase Angle (DELTA)	0.1906 100 °C 31.0 2820 52.0	°C kPa deg			
	G* Sin Delta Test Temperature Complex Modulus (G*)	2220 25.0 6210	kPa °C kPa	Max 5000		

Intertek

Report of Analysis

Sample Designated As Drawn By	: Client : NUSTAR BALTIMORE	Date Taken: 17-August-2012 Date Submitted: 17-August-2012 Date Tested: 19-August-2012				
Method	Test	Result	Units	Spec Limit		
AASHTO T315 PAV-06	Phase Angle (DELTA)	47.6	deg			
	G* Sin Delta	4590	kPa	Max 5000		
	Test Temperature	22.0	°C			
	Complex Modulus (G*)	9600	kPa			
	Phase Angle (DELTA)	44.9	deg			
	G* Sin Delta	6780**	kPa	Max 5000		
	Pass / Fail Temperature	24.3	°C			
AASHTO T313-06	Testing Temperature	-12.0	°C			
	Creep Stiffness @ S60	245	MPa	Max 300		
	m-value @ S60	0.328		Min 0.300		
	Testing Temperature	-18.0	°C			
	Creep Stiffness @ S60	494**	MPa	Max 300		
	m-value @ S60	0.260**		Min 0.300		
	Pass/Fail Temperature	-13.7	°C			
CLASSIFICATION	TG CLASSIFICATION	PG 79.1 - 23.73				
		** = Out of Spec Limit				

Signed:

year M. 1

Intertek

Date: 19-Aug-2012

APPENDIX B – QC DATA

	10	NITION MET	HOD & MAR	SHALL TES	ansportation	LIANCE				
 .	16							Report No.	11	
Project: , Rt. 1 R	esurfacing	Job #			Mix No. 1	2.55MA76			08/31/1	
	/ Keasbey	Contractor	Tik	con	Plant:	Drum		Serial No.	C50DN05	
		\						Gyratory Plug		
Lot Sample No.	24					mm @ N ma	x		ug 300	
Starting Temp.	538 C	-	•.	<u> </u>	Sample No.			Molding Temp	2.731	
Elapsed Time	49:00:00		Pan Maşs =	10	Molding Tem	р.		Eff. Spg of Agg. Blend		
Sample Wgt.	2042.1		Wet Mass		Wt. In Air			Bulk Spg of Agg. Blend	2.714	
-Sample Wgt. Cor. for Mo	pist 2042.0		Dry Mass		Wt in Water			Wt. In Air	4716.5	
3-Sample Wgt. After Ignit					S.S.D.			Wt in Water	2718.8	
C-Wgt. Loss (A-B)	135.4				Gmb @ N ma	х		S.S.D.	4725.6	
D-% Loss (C/A*100)	. 6.63				% Gmm @ N	max		Gmb @ N max		
E-Temp. Compensation					Ht @ N-max			Ht. @ N max		
F-Calibration Factor	0.33				% Voids @ N	max		Ht. @ N des	118.4	
G-% Bitumen (D-E-F)	6.15			6.1 - 6.9	T			Ht. @ N ini	132.3	
Sieve Size	Wt Ret	% Ret.	% Pass					% Gmm @ N max		
2"								% Gmm @ N des	96.0	
1 1/2"				Targets				% Gmm @ N ini	85.9	
1"	0.0	0.0	100.0		1			% Voids @ N des	4.0	
3/4" (19.00mm)	0.0	0.0	100.0	100.0	Pyc Test Re	sults		Gmb @ N des	2.350	
1/2" (012.5mm)	188.5	9.9	90.1	87-97	Sample No.			1		
3/8" (9.5mm)	488.6	25.6	74.4	67-77	Sample Wt		2168.5			
No.4 (4.75mm)	1309.6	68.7	31.3	25-33	Calibrated P	yc.	1240.8	Effective AC	5.87	
No.8 (2.36mm)	1528.3	80.1	19.9	18-26	Total		3409.3	Dust / Asp. Ratio	1.3	
No.16 (1.18mm)	1598.2	83.8	16.2		Pyc + Mix +	Water	2523.5			
No.30 (600mm)	1639.1	86.0	14.0		Volume		885.8	Total Volume	42.5	
No.50 (425mm)	1673.9	87.8	12.2	+	Maximum S	PG	2.448	Volume of Binder	5.70	
No.100 (150mm)	1710.7	89.7	10.3		Mass in H20		1282.7	Binder by Volume	13.4	
No.200 (75mm)	1756.1	92.1	7.9	7.5-11.5	(MAX)		152.8	% VMA	17.4	
		7.9			(BULK)		146.7			
Total Aggregate Wgt./ Pa Wgt. Before Wash	1,906.8	1.7			(002.17					
	1 1 900.0	1						samples were sampled by		

i certity ti all operations were performed in accordance with N.J.D.O.T. Specification and Procedures, to the best of my knowledge.

* Only for test method "B" (Without internal scale)

Difference

119.7

** Only for test method "A" (With internal scale)

..**.**.

Loed 5

DEPARTMENT OF TRANSPORTATION REPRESENTATIVE

LB-XXX 98			New J	ersey Depart	ment Of Tra	ansportation				
		IG	NITION MET	HOD & MAR	SHALL TES	T FOR COMP	PLIANCE		Report No.	· 15
			Job #			Mix No. 1	2.55MA76		Date:	09/06/12
Project: Rt. 1 Resurfacing		rtacing						Serial No.	C50DN051	
Producer: Tilcon / Keasbey		easbey	Contractor	Tilcon		Plant:	Drum		-	
		25	<u>`</u>			Gmm @ N max		Gyratory Plug		
	nple No.					Sample No.			Molding Temp	300
	g Temp.	53:00:00	·	Pan Mass =	10	Molding Tem	p.		Eff. Spg of Agg. Blend	2.731
	ed Time	2042.1	·	Wet Mass		Wt. In Air	·		Bulk Spg of Agg. Blend	2.714
	le Wgt.	2042.1		Dry Mass		Wt in Water			Wt. In Air	4705.8
	. Cor. for Moist	1902.3				S.S.D.			Wt in Water	2726.8
	t. After Ignition					Gmb @ N ma	x		S.S.D.	4715.2
	oss (A-B)	139.7				% Gmm @ N			Gmb @ N max	
	(C/A*100)	6.84				Ht @ N-max			Ht. @ N max	
	mpensation **	0.15				% Voids @ N	max		Ht. @ N des	116.8
	tion Factor	0.33			6.1 - 6.9	110 10103 (6) 11			Ht. @ N ini	131.7
	nen (D-E-F)	6.36		% Pass	0.1-0.0				% Gmm @ N max	
	e Size	Wt Ret	% Ret.	70 Fass					% Gmm @ N des	96.6
	2"	· ·	ļ		Targets				% Gmm @ N ini	85.7
	1/2"			100.0	Targets	+			% Voids @ N des	3.4
	1"	0.0	0.0	100.0	100.0	Pyc Test Re	sults		Gmb @ N des	2.367
	9.00mm)	0.0	0.0	91.4	87-97	Sample No.				
	12.5mm)	164.5	8.6	73.1	67-77	Sample Wt.		2192.0		*.
	9.5mm)	511.6	26.9	28.5	25-33	Calibrated P	Pvc	1240.8	Effective AC	6.08
	4.75mm)	1359.9	71.5	20.1	18-26	Total	<i>j</i> •	3432.8	Dust / Asp. Ratio	1.3
	2.36mm)	1519.4	79.9	16.5	10-20	Pyc + Mix +	Water	2538.1		
	(1.18mm)	1587.7	83.5	14.3		Volume		894.7	Total Volume	42.3
	(600mm)	1630.3	85.7	14.3		Maximum S	PG	2,450	Volume of Binder	5.90
	(425mm)	1666.8	87.6			Mass in H20		1297.3	Binder by Volume	14.0
) (150mm)	1708.2	89.8	10.2	7.5-11.5	(MAX)	T	152.9	% VMA	17.4
	0 (75mm)	1748.0	91.9	8.1	1 7.5-11.5	(BULK)		147.7		
Total Aggre	gate Wgt./ Pan		8.1			(BULK)				
Wat Br	fore Wash	1,902.3								

 Wgt. Before Wash
 1,902.3

 Wgt. After Wash
 1763.5

 Difference
 138.8

Load 5 Test load

I certify that the above samples were sampled by me and that all operations were performed in accordance with N.J.D.O.T. Specification and Procedures, to the best of my knowledge.

* Only for test method "B" (Without internal scale)

** Only for test method "A" (With internal scale)

DEPARTMENT OF TRANSPORTATION REPRESENTATIVE